

# **Encouraging Energy Investment in Indonesia** Through Transboundary CO<sub>2</sub> Hub Development

Prof. Doddy Abdassah Centre of Excellence CCS/CCUS Institut Teknologi Bandung

> IPA Convex 2023 Jakaria , July 25<sup>th</sup>, 2023



# **Presentation Outline**

- □ Background on CCS/CCUS
- **CO**<sub>2</sub> Utilization and Its Environmental Effects
- □ Analogs to CO<sub>2</sub> Injection into Subsurface
- **D** Potential CO<sub>2</sub> Transboundary Hub: Learning from Northern Lights Project
- **D** Potential CO<sub>2</sub> Transboundary Hub in Indonesia
- □ Readiness of Oil and Gas Industry for CCS/CCUS
- **Center of Excellence CCS/CCUS ITB-Portfolio**



# **Background of CCS/CCUS**

Carbon capture, utilization and storage (CCUS) <u>prevents carbon dioxide</u> ( $CO_2$ ) from being released into the atmosphere. The technology involves capturing  $CO_2$  produced by industrial plants and then recycling the  $CO_2$  for utilization (CCU) or compressing it for transportation and then <u>injecting it deep into a rock formation at a carefully selected and</u> <u>safe site</u>, where it is permanently stored (CCS) *-- CO2CRC* 





## The Carbon Cycle



- carbon cycle 0 The is a biogeochemical cycle where different forms of carbon compounds cycled are through the Earth's various like the systems atmosphere, biosphere, hydrosphere, and geosphere.
- Underground storage of CO<sub>2</sub> can be analogous to <u>artificially accelerating</u> <u>Carbon Cycle</u>; hence it is a natural process and <u>CO<sub>2</sub> is not a waste</u>

After Satyana, 2022



Indonesian Oil and Gas companies have experiences related to waste material injection (e.g. drill cuttings injection in BP Tangguh, slurry fracture reinjection in PHR) which requires technologically intensive methods, therefore the learning curve for CO<sub>2</sub> injection will not be steep.





**Drill Cuttings Injection in BP Tangguh Area** 

**Slurry Fracture Injection in Duri Area** 



### **Transboundary CO<sub>2</sub> Hub: Northern Lights Project**



Northern Lights is a partnership between Equinor, Shell and Total, and is a key component of Longship, the Norwegian Government's full-scale carbon capture and storage project, which aims to capture and store approximately 0.8 Mtpa of CO<sub>2</sub> by 2024 from a cement factory in Brevik and Fortum Oslo Varme, a wasteto-energy facility located in Oslo. Phase one of the project will be completed mid-2024 with a capacity of up to 1.5 million tonnes of CO2 per year. The ambition is to expand capacity by an additional 3.5 million tonnes to a total of 5 million tonnes, dependent on market demand.



### Potential of Transboundary CO<sub>2</sub> Hub In Indonesia

#### Storage estimates for countries in Southeast Asia

| Country                                                  | Type of storage                                              | Estimated volume        | Total volume            |
|----------------------------------------------------------|--------------------------------------------------------------|-------------------------|-------------------------|
| Brunei                                                   | Oil and gas fields                                           | 0.6 Gt CO <sub>2</sub>  | 0.6 Gt CO <sub>2</sub>  |
| Indonesia                                                | South Sumatra Basin                                          | 7.65 Gt CO <sub>2</sub> | 8.4 Gt CO <sub>2</sub>  |
|                                                          | Java Basin (deep saline layers)                              | 386 Mt CO2              |                         |
|                                                          | Tarakan Basin                                                | 130 Mt CO <sub>2</sub>  |                         |
|                                                          | Central Sumatra Basin                                        | 229 Mt CO <sub>2</sub>  |                         |
| Malaysia                                                 | Malay Basin                                                  | 80 Gt CO2               | 80 Gt CO2               |
| Philippines                                              | Saline Aquifers                                              | 22 Gt CO <sub>2</sub>   | 22.3 Gt CO <sub>2</sub> |
|                                                          | Gas fields                                                   | 0.3 Gt CO <sub>2</sub>  |                         |
| Thailand                                                 | Saline formation in the Greater Thai Basin and Pattani Basin | 8.9 Gt CO <sub>2</sub>  | 10.3 Gt CO <sub>2</sub> |
|                                                          | Gas and oil fields                                           | 1.4 Gt CO2              |                         |
| Viet Nam                                                 | Deep saline reservoirs                                       | 10.4 Gt CO <sub>2</sub> | 11.8 Gt CO <sub>2</sub> |
|                                                          | Depleted oil and gas fields                                  | 1.4 Gt CO <sub>2</sub>  |                         |
| Sources: Based on ADB (2013); METI (2020b); ERIA (2021). |                                                              |                         |                         |

#### CO2 storage potential in Southeast Asia and Australia



IEA 2021. All rights reserved.

Indonesia has a significant potential to become one of the major players in Transboundary  $CO_2$  Hub, armed with proper regulations and standards, ensuring  $CO_2$  is safely transported and injected in depleted reservoirs (CCS) or producing reservoirs (CCUS/EGR/EOR).

#### Reproduced from IEA Report (2021)



### **Readiness of Oil and Gas Industry for CCS/CCUS**

PRMS

High

3P

3C

3U

P10

Not to scale

bu

### SRMS



The CO<sub>2</sub> – SRMS is being developed to create a consistent set of definitions and a classification system for international usage.
The basic of the SRMS classification is the accessible pore volume in a geologic formation which CO<sub>2</sub> could be stored

•This document is intended for use in geologic formations completely saturated with brine (i.e., saline formations or saline aquifers) and depleted hydrocarbon fields without hydrocarbon production



### **Center of Excellence CCS/CCUS ITB-Portfolio**





Abadi & Sakakemang CCS Feasibility Study



# **Thank You**